Written Exam for the M.Sc. in Economics Autumn 2011-2012 (Fall Term)

Financial Econometrics A: Volatility Modelling

Final Exam: Masters course
Exam date: 21 February 2012

3-hour open book exam.

All questions need to be answered.
Please note that the language used in your exam paper must correspond to the language of the title for which you registered during exam registration. I.e. if you registered for the English title of the course, you must write your exam paper in English. Likewise, if you registered for the Danish title of the course or if you registered for the English title which was followed by "eksamen på dansk" in brackets, you must write your exam paper in Danish.

If you are in doubt about which title you registered for, please see the print of your exam registration from the students' self-service system.

Question 1:

Question 1.1: Consider the following model for log-returns, y_{t}

$$
\begin{align*}
& y_{t}=\sigma_{t} z_{t} \tag{1}\\
& \sigma_{t}^{2}=\omega+\left\{\begin{array}{cc}
y_{t-1}^{2} & \text { if } s_{t}=0 \\
\alpha y_{t-1}^{2} & \text { if } s_{t}=1
\end{array}\right. \tag{2}
\end{align*}
$$

The s_{t} is an unobserved state variable that can take values 0 or 1 . Denote by p_{t} the probability that $s_{t}=1$ conditional on the past returns, $p_{t}=$ $P\left(s_{t}=1 \mid y_{t-1}\right)$.

We will assume that $p_{t} \rightarrow 1$ as $y_{t-1}^{2} \rightarrow \infty$. That is, large lagged squared returns imply $s_{t}=1$ with a high probability. As parameters we set $\theta=$ $\{\omega, \alpha\}, \omega>0, \alpha \geq 0$.

Show that y_{t} is weakly mixing with $E y_{t}^{2}<\infty$ if $\alpha<1$.
Give an interpretation of this result and of the model.

Question 1.2: Corresponding to $\sigma_{0, t}^{2}:=\omega+y_{t-1}^{2}, \sigma_{1, t}^{2}:=\omega+\alpha y_{t-1}^{2}$, we can define the two Gaussian densities,

$$
\begin{equation*}
\phi_{0, t}=\frac{1}{\sqrt{2 \pi \sigma_{0, t}^{2}}} \exp \left(-\frac{y_{t}^{2}}{2 \sigma_{0, t}}\right), \quad \text { and } \quad \phi_{1, t}=\frac{1}{\sqrt{2 \pi \sigma_{1, t}^{2}}} \exp \left(-\frac{y_{t}^{2}}{2 \sigma_{1, t}^{2}}\right) . \tag{3}
\end{equation*}
$$

With the log-likelihood function, $L_{T}(\theta)=\sum_{t=1}^{T} l_{t}(\theta)$, state $l_{t}(\theta)$ in terms of $\phi_{0, t}, \phi_{1, t}$ and p_{t}.

Question 1.3: Find $s_{\alpha}:=\partial L_{T}(\theta) / \partial \alpha$, that is the score in the direction of α, and show that, up to a constant,

$$
\begin{equation*}
s_{\alpha}=\sum_{t=1}^{T} p_{t}^{*}\left(\frac{y_{t}^{2}}{\sigma_{1, t}^{2}}-1\right) \frac{y_{t}^{2}}{\sigma_{1, t}^{2}} . \tag{4}
\end{equation*}
$$

In particular, provide an expression for p_{t}^{*} and explain what it is.
Discuss an algorithm as to how the MLE $\hat{\alpha}$ may be found.

Question 1.4:

Recall that p_{t} is a function of lagged returns y_{t-1}, and such that $p_{t} \rightarrow 1$ when $y_{t-1}^{2} \rightarrow \infty$. Give an example of a non-constant probability function $p_{t}=p\left(y_{t-1}\right)$ which satisfies this.

Explain how you would simulate y_{t} based on your (or any) choice of p_{t}.
With a simulated series of this form, $y_{t}^{\text {sim }}$, say, what would you expect to find empirically when fitting a $\operatorname{GARCH}(1,1)$ model to the $y_{t}^{\text {sim }}$ data?

Question 2:

Question 2.1:

Consider the Realized volatility series v_{t} corresponding to $T=796$ days in Figure 2.1 below together with the empirical ACF for x_{t}.

Figure 2.1
A preliminary analysis of v_{t} gives, that a model of the form,

$$
\begin{equation*}
v_{t}=\rho_{1} v_{t-1}+\rho_{10} v_{t-10}+\rho_{32} v_{t-32}+\varepsilon_{t}, \tag{5}
\end{equation*}
$$

with $\varepsilon_{t} \operatorname{iidN}\left(0, \sigma^{2}\right)$, describes well the dynamics of v_{t} with the estimated coefficients $\hat{\rho}_{1}, \hat{\rho}_{10}$ and $\hat{\rho}_{32}$ all significant.

Discuss what type of memory, or autocorrelation structure, in v_{t} is being modelled and why given the graphs in Figure 2.1.

Suggest an alternative model with fewer parameters, and at the same time, more lags of v_{t} entering.

Question 2.2: Consider instead a different model for realized volatility v_{t}, as given by,

$$
\begin{equation*}
\Delta v_{t}=\pi v_{t-1}+\sigma_{s_{t}} z_{t} \tag{6}
\end{equation*}
$$

where z_{t} is $\operatorname{iidN}(0,1), s_{t}$ is iid with $p\left(s_{t}=1\right)=p_{1}=1-p\left(s_{t}=2\right)$, and $\sigma_{s_{t}}$ switches between two values σ_{1} and σ_{2}, with $\sigma_{1} \neq \sigma_{2}$.

Define $\varepsilon_{t}=\sigma_{s_{t}} z_{t}$. State conditions under which ε_{t} is stationary.
Find $\sigma_{\varepsilon}^{2}=E \varepsilon_{t}^{2}$ and $E \varepsilon_{t} \varepsilon_{t-1}$.

Consider the recursion, $v_{t}^{*}:=\sum_{i=0}^{\infty}(1+\pi)^{i} \varepsilon_{t-i}$. Show that $E\left(v_{t}^{*}\right)^{2}<\infty$ if $\pi \in]-2,0]$ and ε_{t} is stationary.

It can be shown that this implies that v_{t}^{*} is well-defined stationary and weakly mixing process. What is the relation with v_{t} ?

Question 2.3: Rather than the simple iid switching assume let s_{t} be Markov switching according to the transition matrix, P,

$$
P=\left(\begin{array}{ll}
p_{11} & p_{21} \tag{7}\\
p_{12} & p_{22}
\end{array}\right)
$$

The parameters of the model are now given by $\theta=\left(p_{11}, p_{22}, \pi, \sigma_{1}^{2}, \sigma_{2}^{2}\right)$.
Explain how you would find the MLE $\hat{\theta}$.

Question 2.4:

Estimation of the Markov switching model for realized volatility v_{t} gave the following:

$\underset{\text { [std. error] }}{\hat{p}_{i j}}:$	$\hat{p}_{11}=0.91$	$\hat{p}_{21}=\begin{gathered}0.25 \\ {[0.044]}\end{gathered}$
$\underset{\text { [std. error] }}{\hat{\sigma}_{s_{t}}} \times 10^{5}:$	$\hat{\sigma}_{1}=1.3$	$\hat{\sigma}_{2}=8.8 .7$
$\hat{\pi}$	-0.16	

Also LM-tests based on estimated standardized residuals, \hat{z}_{t}, gave:

$$
\begin{array}{ll}
\text { LM no ARCH: } & \text { p-value: } 0.001 \\
\text { Test of normality: } & \text { p-value: } 0.02
\end{array}
$$

Comment on the output.

Question 2.5:

Ignoring the Markov switching, the model is rewritten as,

$$
\begin{equation*}
\Delta v_{t}=\pi v_{t-1}+\epsilon_{t} \tag{8}
\end{equation*}
$$

with $\epsilon_{t} \operatorname{iidN}\left(0, \sigma_{\epsilon}^{2}\right)$. As usual in realized volatility modeling, v_{t} may be viewed as sampled in discrete time time $t(t=1,2,3, \ldots, T=800)$ from a continuous time counterpart on the form:

$$
\begin{equation*}
d V_{u}=b V_{u} d u+c d W_{u} \tag{9}
\end{equation*}
$$

where $u \in[0, T]$ and W_{u} is a Brownian motion.
Use Ito's formula to find the link between b and π.
Next compute the MLE \hat{b}.
For which values of b would you expect V_{u} to be stationary?
Explain how would you test if the continuous time process is a Brownian motion.

